Circulating human B lymphocytes are deficient in nucleotide excision repair and accumulate mutations upon proliferation.
نویسندگان
چکیده
Faithful repair of DNA lesions is a crucial task that dividing cells must actively perform to maintain genome integrity. Strikingly, nucleotide excision repair (NER), the most versatile DNA repair system, is specifically down-regulated in terminally differentiated cells. This prompted us to examine whether NER attenuation might be a common feature of all G₀-arrested cells, and in particular of those that retain the capacity to reenter cell cycle and might thus convert unrepaired DNA lesions into mutations, a prerequisite for malignant transformation. Here we report that quiescent primary human B lymphocytes down-regulate NER at the global genome level while maintaining proficient repair of constitutively expressed genes. Quiescent B cells exposed to an environment that causes both DNA damage and proliferation accumulate point mutations in silent and inducible genes crucial for cell replication and differentiation, such as BCL6 and Cyclin D2. Similar to differentiated cells, NER attenuation in quiescent cells is associated with incomplete phosphorylation of the ubiquitin activating enzyme Ube1, which is required for proficient NER. Our data establish a mechanistic link between NER attenuation during quiescence and cell mutagenesis and also support the concept that oncogenic events targeting cell cycle- or activation-induced genes might initiate genomic instability and lymphomagenesis.
منابع مشابه
LYMPHOID NEOPLASIA Circulating human B lymphocytes are deficient in nucleotide excision repair and accumulate mutations upon proliferation
Faithful repair of DNA lesions is a crucial task that dividing cells must actively perform to maintain genome integrity. Strikingly, nucleotide excision repair (NER), the most versatile DNA repair system, is specifically down-regulated in terminally differentiated cells. This prompted us to examine whether NER attenuation might be a common feature of all G0-arrested cells, and in particular of ...
متن کاملAltered spectra of hypermutation in antibodies from mice deficient for the DNA mismatch repair protein PMS2.
Mutations are introduced into rearranged Ig variable genes at a frequency of 10(-2) mutations per base pair by an unknown mechanism. Assuming that DNA repair pathways generate or remove mutations, the frequency and pattern of mutation will be different in variable genes from mice defective in repair. Therefore, hypermutation was studied in mice deficient for either the DNA nucleotide excision r...
متن کاملThe relationship between benzo[a]pyrene-induced mutagenesis and carcinogenesis in repair-deficient Cockayne syndrome group B mice.
Cockayne syndrome (CS) patients are deficient in the transcription coupled repair (TCR) subpathway of nucleotide excision repair (NER) but in contrast to xeroderma pigmentosum patients, who have a defect in the global genome repair subpathway of NER, CS patients do not have an elevated cancer incidence. To determine to what extent a TCR deficiency affects carcinogen-induced mutagenesis and carc...
متن کاملExpression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts.
We have shown previously that Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in the removal of UV-induced cyclobutane pyrimidine dimers from genomic DNA, but still proficient in the transcription-coupled repair pathway (Ford, J. M., and Hanawalt, P. C. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 8876-8880). We have now utilized monoclonal antibodies specific for cycl...
متن کاملAflatoxin B1 formamidopyrimidine adducts are preferentially repaired by the nucleotide excision repair pathway in vivo.
Aflatoxin B(1) (AFB(1)), the most potent member of the aflatoxin family of hepatocarcinogens, upon metabolic activation reacts with DNA and forms a population of covalent adducts. The most prevalent adduct, 8,9-dihydro-8-(N(7)-guanyl-)-9-hydroxyaflatoxin (AFB(1)-N(7)-dG), as well as the AFB(1) formamidopyrimidine adduct (AFB(1)-FAPY), resulting from imidazole ring opening of the major adduct, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 117 23 شماره
صفحات -
تاریخ انتشار 2011